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1 SubHopf Algebra Results

Example. Last time we showed that T (x) = 1− B+( 1
T (x) ).

T (x) = 1− r x− r
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Define t0 = 1, n > 0, tn = −[xn]T (x). Now what is ∆(ti)?

∆(t0) = 1⊗ 1 = t0 ⊗ t0

∆(t1) = 1⊗ r + r ⊗ 1 = t0 ⊗ t1 + t1 ⊗ t0

∆(t2) = 1⊗ t2 + t2 ⊗ 1+ r ⊗ r = t0 ⊗ t2 + t2 ⊗ t0 + t1 ⊗ t1

∆(t3) = t0 ⊗ t3 + t3 ⊗ t0 + 3 r ⊗ r
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= t0 ⊗ t3 + t3 ⊗ t0 + 3t1 ⊗ t2 + (t2 + t21) ⊗ t1

∆(t4) = ∆
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= t4 ⊗ t0 + t0 ⊗ t4 + r ⊗ 5
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+ r ⊗ 5 r r
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r ⊗ 2 r + r r r ⊗ r

= t4 ⊗ t0 + t0 ⊗ t4 + 5t1 ⊗ t3 + 3(t2 + 2t21) ⊗ t2 + (t3 + 2t2t1 + t31) ⊗ t1

What we are observing is if A be the algebra generated by the ti then ∆(ti) ⊆
A⊗A. So A is not just a subalgebra of the Connes-Kreimer Hopf algebra; it is
also a subHopf algebra.

Theorem 1 [1] Let H be a graded connected Hopf algebra which is either free
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(words over generators) or free-commutative ( polynomial algebra over genera-
tors) as an algebra. Let (Bn

+)∞n=1 be a family of Hochschild 1-cocycles. Then

T (x) = 1+
∞∑

n=1

xnwnBn
+(T (x)n+1),

where the wn are from k. This has a unique solution given recursively and
∆tn =

∑n

j=0 Pn,j(t0, . . . , tn−j) ⊗ tj, where T (x) =
∑

∞

n=0 tnxn and Pn,j is a
polynomial.

But this isn’t quite satisfactory because the specification is rather special.
If we only have a B+ of weight 1, here’s a nice theorem:

Theorem 2 [2] Let P =
∑

∞

n=0 pnxn be a formal power series with p0 = 1, then
T (x) = xB+(P (T (x))) has a unique solution given recursively and the following
are equivalent:

1. The algebra generated by the ti (T (x) =
∑

∞

n=0 tnxn) is a subHopf algebra.

2. ∃(α, β) ∈ Q2 such that (1 − αβx)P
′

(x) = αP (x).

3. ∃(α, β) ∈ Q2 such that

(a) P (x) = 1 if α = 0.

(b) P (x) = eαx if β = 0, a 6= 0.

(c) P (x) = (1 − αβx)−
1

β else.

Together

Theorem 3 [3] Suppose

T (x) =
∑

j∈J

xjβj + (Pj(T (x))) (∗)

with J ⊆ {1, 2, . . .}, Pj(0) = 1, Pj formal power series, and suppose the coeffi-
cients of the solution T (x) form a subHopf algebra. Then one of the following
holds:

1. ∃λ, µ ∈ Q such that (∗) is

T (x) =
∑

j∈J

xjBj
+((1 − µT (x)Q(T (x))j),

where

Q(h) =

{

(1 − µλ)
λ
µ if µ 6= 0

eλh if µ = 0.
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2. ∃m ≥ 0 and α ∈ Q, α 6= 0 such that (∗) is

T (x) =
∑

j∈J
m|j

xBj
+(1 + αT (x)) +

∑

j∈J
m∤j

xBj
+(1)

Similar results hold for specification which are systems.

Let’s prove part of Foissy’s 2007 result. We’ll do (1) ⇒ (2) ⇒ (3). The proof of
(3) ⇒ (1) goes through the plane version and involves looking at reductions on
the pairs (α, β).

Proof.

(2) ⇒ (3) Solve the differential equation. If α = 0 the differential equation becomes
P

′

(x) = 0, so P is a constant and so by the normalization P (x) = 1.

Assume α 6= 0. If β = 0, P
′

(x) = αP (x) so P (x) = eαx (and normalize
this way as P (0) = 1).

Assume α, β are both nonzero. Then the differential equation is (1 −
αβx)dP

dx
= αP (x), so

dP

P (x)
=

αdx

1 − αβx
,

so

log P + C =

∫
dP

P
=

∫
αdx

1 − αβx
= log(1 − αβx).

But P (0) = 1, so 0+C = 0, so C = 0. Therefore log P = log(1−αβx)−
1

β ,

so P (x) = (1 − αβx)−
1

β .

(1) ⇒ (2) Let A be the algebra generated by the coefficients of T . First note that if
P (x) = 1 then T (x) = x and all is true. So from now on assume P (x) has
a constant term.

Suppose pn 6= 0, n ≥ 2, n minimal, then t1 = t2 = . . . = tn = 0 but

tn+1 = pnB+( r n), but B+( r n) =

r

r r r rp p p

︸ ︷︷ ︸

n times

. But by hypothesis we have a

subHopf algebra, so ∆






r

r r r rp p p




 ⊆ A ⊗ A. But A contains no trees of

size 2 − n, which is a contradiction since

∆(

r

r r r rp p p

︸ ︷︷ ︸

n times

) =

r

r r r rp p p ⊗ 1+

n∑

k=0

(
n

k

)

r k ⊗

r

r r r rp p p

︸ ︷︷ ︸

n−k times

.

So we need to have tn−k 6= 0, ∀0 ≤ k ≤ n, so p1 6= 0. As a further
consequence there is a tree of every size in A, because 0 6= p1B+(tn) ∈
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Hn+1 appears in tn+1, where H is the Connes-Kreimer Hopf algebra /Q.
Let Z : H −→ Q be the characteristic map of r , i.e. Z(F ) = δ q ,F on
forests and extended linearly. Consider (Z ⊗ id)∆(T (x)). By assumption
A is a subHopf algebra so ∆(tn) ⊆ A ⊗ A, so (Z ⊗ id)∆(T (x)) ∈ A[[x]].
Also observe the following

(Z ⊗ id)(ab) = (Z ⊗ id)(a)(ε ⊗ id)(b) + (ε ⊗ id)(a)(Z ⊗ id)(b), (1)

for a, b ∈ H⊗H . Let’s check this. It suffices to check for a, b pure tensors,
i.e. a = a1 ⊗ a2, b = b1 ⊗ b2.

LHS of (1) = (Z ⊗ id)(a1b1 ⊗ a2b2)

=

{
a2b2 if a1 = r , b1 = 1 or a1 = 1, b1 = r

0 otherwise.

On the RHS of (1), again if a1 6= r , b1 6= r , we get 0. If a1 = r then
we have a2ε(b1)b2 + 0, since ε(a1) = 0, so for this to be nonzero we need
b1 = 1. Similarly for the second term on the RHS. (Note throughout I
have pushed scalars on to the a2, b2 part.) This proves (1).

(Z ⊗ id)∆(T (x)) = (Z ⊗ id)∆(xB+(P (T (x)))

= (Z ⊗ id)∆(

∞∑

n=0

xpnB+(T (x)n))

=

∞∑

n=0

(Z ⊗ id)∆B+(T (x)n)

=

∞∑

n=0

xpnZ(B+(T (x)n)) +

∞∑

n=1

xpn(Z ⊗ B+)∆(T (x)n)).

(Since ∆B+ = B+ ⊗ 1+ (id ⊗ B+)∆, we have:)

= Z(T (x)) + B+(

∞∑

n=1

xpn(Z ⊗ id)∆(T (x))n),

since the constant does not affect B+.

= t1 + B+

(
∞∑

n=0

xnpn(ε ⊗ id)∆(T (x))n−1(Z ⊗ id)∆(T (x))

)

by (1)

= t1 + B+

(
∞∑

n=0

xnpnT (x)n−1(Z ⊗ id)∆(T (x)

)

= t1 + xB+(P
′

T (x))(Z ⊗ id)∆(T (x))).

Next let

L : H [[x]] −→ H [[x]]

a 7−→ xB+(P
′

(T (x))a).
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L increases degree, so id − L is formally invertible. So the calculation
above says

(id − L)((Z ⊗ id)∆(T (x))) = Z(T (x))(t1),

or, equivalenty

(Z ⊗ id)∆(T (x)) = (id − L)−1(t1) = t1(id − L)−1(1).
Now since A is a subHopf algebra, we have

(Z ⊗ id)∆(T (x)) ⊆ A[[x]]

⇒(id − L)−1(1) ⊆ A[[x]].

Now the third step is to pull out easy coefficient and compare. From
T (x) = xB+(P (T (x))) we have the recursive expression

t1 = r , tn+1 =

n∑

k=1

∑

α1+...+αk=n

pkB+(tα1
. . . tαk

).

Write (id − L)−1(1) =
∑

∞

i=0 bix
i. By induction

b0 = 1

bn+1 =
n∑

k=1

∑

α1+...+αk=n

(k + 1)pk+1B+(tα1
. . . tαk

)

+
n∑

k=1

∑

α1+...+αk=n

kpkB+(bα1
tα2

. . . tαk
).

Now compare coefficients. Consider B+(fn), B+(bn), i.e.trees where the
root has only one child and degree n + 1 in fn+1 and bn+1. Coefficient in
fn+1 is p1B+(fn), and the coefficient in bn+1 is 2p2B+(fn) + p1B+(bn),
but by assumption the fn make a subHopf algebra, and the bn are in it,
so bn+1 = λn+1fn+1, λn+1 ∈ Q. So

λ1 = p1, λn+1 =

(
2p2

p1
+ λn

)

. (2)

Consider By( r n) in fn+1 and bn+1. In fn+1 we get pn, and in bn+1 we
get (n + 1)pn+1 + npnp1, so

λn+1pn = (n + 1)pn+1 + npnp1, ∀n ≥ 1,

which together with (2) gives

(n + 1)pn+1 + (p1 − 2
p2

p1
)npn = p1pn.

If we rewrite this at level of series we get

P
′

(h) + (p1 − 2
p2

p1
)hP

′

(h) = p1P (h).

Now let α = p1, β = 2 p2

p2

1

− 1 to get the result. �
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