Math 821, Spring 2013, Lecture 13

Karen Yeats
(Scribe: Mahdieh Malekian)

March 5, 2013

1 SubHopf Algebra Results

Example. Last time we showed that $T(x)=\mathbb{1}-B_{+}\left(\frac{1}{T(x)}\right)$.
$T(x)=\mathbb{1}-\bullet x-!x^{2}-(!+\bullet \cdot) x^{3}-\left(\begin{array}{l}\bullet \\ \bullet \\ \bullet \\ \bullet\end{array}+2 \cdot \bullet+\bullet \bullet\right) x^{4}+O\left(x^{5}\right)$.
Define $t_{0}=\mathbb{1}, n>0, t_{n}=-\left[x^{n}\right] T(x)$. Now what is $\Delta\left(t_{i}\right)$?

$$
\begin{aligned}
& \Delta\left(t_{0}\right)=\mathbb{1} \otimes \mathbb{1}=t_{0} \otimes t_{0} \\
& \Delta\left(t_{1}\right)=\mathbb{1} \otimes \cdot+\bullet \mathbb{1}=t_{0} \otimes t_{1}+t_{1} \otimes t_{0} \\
& \Delta\left(t_{2}\right)=\mathbb{1} \otimes t_{2}+t_{2} \otimes \mathbb{1}+\bullet \otimes \bullet=t_{0} \otimes t_{2}+t_{2} \otimes t_{0}+t_{1} \otimes t_{1} \\
& \Delta\left(t_{3}\right)=t_{0} \otimes t_{3}+t_{3} \otimes t_{0}+3 \bullet \otimes \bullet+\mathbf{\bullet} \otimes+\bullet \bullet \otimes \bullet \\
& =t_{0} \otimes t_{3}+t_{3} \otimes t_{0}+3 t_{1} \otimes t_{2}+\left(t_{2}+t_{1}^{2}\right) \otimes t_{1} \\
& \Delta\left(t_{4}\right)=\Delta\left(\begin{array}{l}
\bullet \\
! \\
\bullet
\end{array}+2 \bullet+\cdots\right) \\
& =t_{4} \otimes t_{0}+t_{0} \otimes t_{4}+\bullet \otimes 5!+\bullet \otimes 5 \bullet+3!\otimes!+6 \bullet \bullet \otimes \boldsymbol{\bullet}+\boldsymbol{\bullet} \otimes \bullet \\
& +\bullet \bullet \bullet+!\bullet \otimes 2 \bullet+\bullet \bullet \bullet \bullet \\
& =t_{4} \otimes t_{0}+t_{0} \otimes t_{4}+5 t_{1} \otimes t_{3}+3\left(t_{2}+2 t_{1}^{2}\right) \otimes t_{2}+\left(t_{3}+2 t_{2} t_{1}+t_{1}^{3}\right) \otimes t_{1}
\end{aligned}
$$

What we are observing is if A be the algebra generated by the t_{i} then $\Delta\left(t_{i}\right) \subseteq$ $A \otimes A$. So A is not just a subalgebra of the Connes-Kreimer Hopf algebra; it is also a subHopf algebra.

Theorem 1 [1] Let H be a graded connected Hopf algebra which is either free
(words over generators) or free-commutative (polynomial algebra over generators) as an algebra. Let $\left(B_{+}^{n}\right)_{n=1}^{\infty}$ be a family of Hochschild 1-cocycles. Then

$$
T(x)=\mathbb{1}+\sum_{n=1}^{\infty} x^{n} w_{n} B_{+}^{n}\left(T(x)^{n+1}\right)
$$

where the w_{n} are from k. This has a unique solution given recursively and $\Delta t_{n}=\sum_{j=0}^{n} P_{n, j}\left(t_{0}, \ldots, t_{n-j}\right) \otimes t_{j}$, where $T(x)=\sum_{n=0}^{\infty} t_{n} x^{n}$ and $P_{n, j}$ is a polynomial.

But this isn't quite satisfactory because the specification is rather special. If we only have a B_{+}of weight 1 , here's a nice theorem:

Theorem 2 [2] Let $P=\sum_{n=0}^{\infty} p_{n} x^{n}$ be a formal power series with $p_{0}=1$, then $T(x)=x B_{+}(P(T(x)))$ has a unique solution given recursively and the following are equivalent:

1. The algebra generated by the $t_{i}\left(T(x)=\sum_{n=0}^{\infty} t_{n} x^{n}\right)$ is a subHopf algebra.
2. $\exists(\alpha, \beta) \in \mathbb{Q}^{2}$ such that $(1-\alpha \beta x) P^{\prime}(x)=\alpha P(x)$.
3. $\exists(\alpha, \beta) \in \mathbb{Q}^{2}$ such that
(a) $P(x)=1$ if $\alpha=0$.
(b) $P(x)=e^{\alpha x}$ if $\beta=0, a \neq 0$.
(c) $P(x)=(1-\alpha \beta x)^{-\frac{1}{\beta}}$ else.

Together

Theorem 3 [3] Suppose

$$
\begin{equation*}
T(x)=\sum_{j \in J} x^{j} \beta^{j}+\left(P_{j}(T(x))\right) \tag{*}
\end{equation*}
$$

with $J \subseteq\{1,2, \ldots\}, P_{j}(0)=1, P_{j}$ formal power series, and suppose the coefficients of the solution $T(x)$ form a subHopf algebra. Then one of the following holds:

1. $\exists \lambda, \mu \in \mathbb{Q}$ such that $(*)$ is

$$
T(x)=\sum_{j \in J} x^{j} B_{+}^{j}\left(\left(1-\mu T(x) Q(T(x))^{j}\right)\right.
$$

where

$$
Q(h)= \begin{cases}(1-\mu \lambda)^{\frac{\lambda}{\mu}} & \text { if } \mu \neq 0 \\ e^{\lambda h} & \text { if } \mu=0\end{cases}
$$

2. $\exists m \geq 0$ and $\alpha \in \mathbb{Q}, \alpha \neq 0$ such that $(*)$ is

$$
T(x)=\sum_{\substack{j \in J \\ m \mid j}} x B_{+}^{j}(1+\alpha T(x))+\sum_{\substack{j \in J \\ m \nmid j}} x B_{+}^{j}(\mathbb{1})
$$

Similar results hold for specification which are systems.

Let's prove part of Foissy's 2007 result. We'll do $(1) \Rightarrow(2) \Rightarrow(3)$. The proof of $(3) \Rightarrow(1)$ goes through the plane version and involves looking at reductions on the pairs (α, β).

Proof.

$(2) \Rightarrow(3)$ Solve the differential equation. If $\alpha=0$ the differential equation becomes $P^{\prime}(x)=0$, so P is a constant and so by the normalization $P(x)=1$.
Assume $\alpha \neq 0$. If $\beta=0, P^{\prime}(x)=\alpha P(x)$ so $P(x)=e^{\alpha x}$ (and normalize this way as $P(0)=1$).

Assume α, β are both nonzero. Then the differential equation is $(1-$ $\alpha \beta x) \frac{d P}{d x}=\alpha P(x)$, so

$$
\frac{d P}{P(x)}=\frac{\alpha d x}{1-\alpha \beta x}
$$

so

$$
\log P+C=\int \frac{d P}{P}=\int \frac{\alpha d x}{1-\alpha \beta x}=\log (1-\alpha \beta x)
$$

But $P(0)=1$, so $0+C=0$, so $C=0$. Therefore $\log P=\log (1-\alpha \beta x)^{-\frac{1}{\beta}}$, so $P(x)=(1-\alpha \beta x)^{-\frac{1}{\beta}}$.
$(1) \Rightarrow(2)$ Let A be the algebra generated by the coefficients of T. First note that if $P(x)=1$ then $T(x)=x$ and all is true. So from now on assume $P(x)$ has a constant term.

Suppose $p_{n} \neq 0, n \geq 2, n$ minimal, then $t_{1}=t_{2}=\ldots=t_{n}=0$ but $t_{n+1}=p_{n} B_{+}\left(\bullet^{n}\right)$, but $B_{+}\left(\bullet{ }^{n}\right)=\underbrace{\bullet \bullet . \ldots}_{n \text { times }}$. But by hypothesis we have a subHopf algebra, so $\Delta(\cdots \cdots \bullet) \subseteq A \otimes A$. But A contains no trees of size $2-n$, which is a contradiction since

So we need to have $t_{n-k} \neq 0, \forall 0 \leq k \leq n$, so $p_{1} \neq 0$. As a further consequence there is a tree of every size in A, because $0 \neq p_{1} B_{+}\left(t_{n}\right) \in$
H_{n+1} appears in t_{n+1}, where H is the Connes-Kreimer Hopf algebra $/ \mathbb{Q}$. Let $Z: H \longrightarrow \mathbb{Q}$ be the characteristic map of •, i.e. $Z(F)=\delta_{\bullet}, F$ on forests and extended linearly. Consider $(Z \otimes i d) \Delta(T(x))$. By assumption A is a subHopf algebra so $\Delta\left(t_{n}\right) \subseteq A \otimes A$, so $(Z \otimes i d) \Delta(T(x)) \in A[[x]]$. Also observe the following

$$
\begin{equation*}
(Z \otimes i d)(a b)=(Z \otimes i d)(a)(\varepsilon \otimes i d)(b)+(\varepsilon \otimes i d)(a)(Z \otimes i d)(b) \tag{1}
\end{equation*}
$$

for $a, b \in H \otimes H$. Let's check this. It suffices to check for a, b pure tensors, i.e. $a=a_{1} \otimes a_{2}, b=b_{1} \otimes b_{2}$.

$$
\begin{aligned}
\text { LHS of }(1) & =(Z \otimes i d)\left(a_{1} b_{1} \otimes a_{2} b_{2}\right) \\
& = \begin{cases}a_{2} b_{2} & \text { if } a_{1}=\bullet, b_{1}=\mathbb{1} \text { or } a_{1}=\mathbb{1}, b_{1}=\bullet \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

On the RHS of (1), again if $a_{1} \neq \bullet, b_{1} \neq \bullet$, we get 0 . If $a_{1}=\bullet$ then we have $a_{2} \varepsilon\left(b_{1}\right) b_{2}+0$, since $\varepsilon\left(a_{1}\right)=0$, so for this to be nonzero we need $b_{1}=\mathbb{1}$. Similarly for the second term on the RHS. (Note throughout I have pushed scalars on to the a_{2}, b_{2} part.) This proves (1).

$$
\begin{aligned}
(Z \otimes i d) \Delta(T(x)) & =(Z \otimes i d) \Delta\left(x B_{+}(P(T(x)))\right. \\
& =(Z \otimes i d) \Delta\left(\sum_{n=0}^{\infty} x p_{n} B_{+}\left(T(x)^{n}\right)\right) \\
& =\sum_{n=0}^{\infty}(Z \otimes i d) \Delta B_{+}\left(T(x)^{n}\right) \\
& \left.=\sum_{n=0}^{\infty} x p_{n} Z\left(B_{+}\left(T(x)^{n}\right)\right)+\sum_{n=1}^{\infty} x p_{n}\left(Z \otimes B_{+}\right) \Delta\left(T(x)^{n}\right)\right)
\end{aligned}
$$

(Since $\Delta B_{+}=B_{+} \otimes \mathbb{1}+\left(i d \otimes B_{+}\right) \Delta$, we have:)

$$
=Z(T(x))+B_{+}\left(\sum_{n=1}^{\infty} x p_{n}(Z \otimes i d) \Delta(T(x))^{n}\right)
$$

since the constant does not affect B_{+}.

$$
\begin{aligned}
& =t_{1}+B_{+}\left(\sum_{n=0}^{\infty} x n p_{n}(\varepsilon \otimes i d) \Delta(T(x))^{n-1}(Z \otimes i d) \Delta(T(x))\right) \text { by } \\
& =t_{1}+B_{+}\left(\sum_{n=0}^{\infty} x n p_{n} T(x)^{n-1}(Z \otimes i d) \Delta(T(x))\right. \\
& \left.=t_{1}+x B_{+}\left(P^{\prime} T(x)\right)(Z \otimes i d) \Delta(T(x))\right)
\end{aligned}
$$

Next let

$$
\begin{aligned}
L: H[[x]] & \longrightarrow H[[x]] \\
a & \longmapsto x B_{+}\left(P^{\prime}(T(x)) a\right) .
\end{aligned}
$$

L increases degree, so $i d-L$ is formally invertible. So the calculation above says

$$
(i d-L)((Z \otimes i d) \Delta(T(x)))=Z(T(x))\left(t_{1}\right)
$$

or, equivalenty

$$
(Z \otimes i d) \Delta(T(x))=(i d-L)^{-1}\left(t_{1}\right)=t_{1}(i d-L)^{-1}(\mathbb{1})
$$

Now since A is a subHopf algebra, we have

$$
\begin{aligned}
& (Z \otimes i d) \Delta(T(x)) \subseteq A[[x]] \\
\Rightarrow & (i d-L)^{-1}(\mathbb{1}) \subseteq A[[x]] .
\end{aligned}
$$

Now the third step is to pull out easy coefficient and compare. From $T(x)=x B_{+}(P(T(x)))$ we have the recursive expression

$$
t_{1}=\bullet, t_{n+1}=\sum_{k=1}^{n} \sum_{\alpha_{1}+\ldots+\alpha_{k}=n} p_{k} B_{+}\left(t_{\alpha_{1}} \ldots t_{\alpha_{k}}\right) .
$$

Write $(i d-L)^{-1}(\mathbb{1})=\sum_{i=0}^{\infty} b_{i} x^{i}$. By induction

$$
\begin{aligned}
& b_{0}=1 \\
& b_{n+1}= \\
& \sum_{k=1}^{n} \sum_{\alpha_{1}+\ldots+\alpha_{k}=n}(k+1) p_{k+1} B_{+}\left(t_{\alpha_{1}} \ldots t_{\alpha_{k}}\right) \\
& \\
& +\sum_{k=1}^{n} \sum_{\alpha_{1}+\ldots+\alpha_{k}=n} k p_{k} B_{+}\left(b_{\alpha_{1}} t_{\alpha_{2}} \ldots t_{\alpha_{k}}\right) .
\end{aligned}
$$

Now compare coefficients. Consider $B_{+}\left(f_{n}\right), B_{+}\left(b_{n}\right)$, i.e.trees where the root has only one child and degree $n+1$ in f_{n+1} and b_{n+1}. Coefficient in f_{n+1} is $p_{1} B_{+}\left(f_{n}\right)$, and the coefficient in b_{n+1} is $2 p_{2} B_{+}\left(f_{n}\right)+p_{1} B_{+}\left(b_{n}\right)$, but by assumption the f_{n} make a subHopf algebra, and the b_{n} are in it, so $b_{n+1}=\lambda_{n+1} f_{n+1}, \lambda_{n+1} \in \mathbb{Q}$. So

$$
\begin{equation*}
\lambda_{1}=p_{1}, \lambda_{n+1}=\left(\frac{2 p_{2}}{p_{1}}+\lambda_{n}\right) \tag{2}
\end{equation*}
$$

Consider $B_{y}\left(\bullet{ }^{n}\right)$ in f_{n+1} and b_{n+1}. In f_{n+1} we get p_{n}, and in b_{n+1} we get $(n+1) p_{n+1}+n p_{n} p_{1}$, so

$$
\lambda_{n+1} p_{n}=(n+1) p_{n+1}+n p_{n} p_{1}, \quad \forall n \geq 1
$$

which together with (2) gives

$$
(n+1) p_{n+1}+\left(p_{1}-2 \frac{p_{2}}{p_{1}}\right) n p_{n}=p_{1} p_{n}
$$

If we rewrite this at level of series we get

$$
P^{\prime}(h)+\left(p_{1}-2 \frac{p_{2}}{p_{1}}\right) h P^{\prime}(h)=p_{1} P(h)
$$

Now let $\alpha=p_{1}, \beta=2 \frac{p_{2}}{p_{1}^{2}}-1$ to get the result.

References

[1] Christoph Bergbauer and Dirk Kreimer. New algebraic aspects of perturbative andnon-perturbative quantum field theory. In Vladas Sidoraviius, editor, New Trends in Mathematical Physics, pages 45-58. Springer Netherlands, 2009.
[2] L. Foissy. Fa di bruno subalgebras of the hopf algebra of planar trees from combinatorial dyson-schwinger equations. Adv. Math, pages 136-162, 2007.
[3] L. Foissy. General dyson-schwinger equations and systems. 2011.

